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We consider a problem concerning the positioning of an object, affected by random factors. The aim is to minimize the deviation 

of a terminal object location from the predefined one by a single change of the increments of the corresponding stochastic process at 
a selected time moment. As examples, we mention the position of a sail boat, in the presence of random wind, and the problem of 
hedging of a European option under the assumption that the portfolio can be changed only once. 

The problem is related to the theory of optimal stopping, since it is enough to find only an optimal time moment, when the incre-
ments of the stochastic process should be changed, and the magnitude of change is determined automatically.  Is is explored by the 
methods of stochastic analysis (martingales, Ito formula), stochastic optimal control (Hamilton-Jacobi-Bellman equation, viscosity 
solutions) and numerical methods (finite-difference scheme, iteration method). We obtain the lower bounds of the boundary of the 
continuation region for the cases of Brownian motion with drift and geometrical Brownian motion. The numerical results are com-
pared with these estimates.   
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